
Rsyslog: going up from 40K
messages per second to 250K
Rainer Gerhards

What's in it for you?

• Bad news: will not teach you to make your kernel
component five times faster

• Perspective
▫ user-space application
▫ going from single core to multi core

• Lessons learned
▫ things we got wrong
▫ how we improved the situation

• our experiences hopefully useful for other user-
space applications as well

So what is rsyslog?

• modern syslog message processor
• Forked from sysklogd

▫ Some initial coding started 2003
▫ Single-threaded design and pretty old code
▫ But it worked!

• Really got momentum when Fedora looked for a
new syslogd in 2007

• has become the de-facto standard on most
distributions

Rsyslog project...

• Design goals – around 2004
▫ Drop-in replacement for sysklogd
▫ Easy to use for simple cases
▫ Powerful for complex cases
▫ High performance and support for tomorrows

multi-core machines
• Very heavy hacking in 2007 and 2008

▫ Many, many features added
▫ No time to consolidate them

How does rsyslog relate to other
apps?
• Rsyslog actually is

▫ a message router
▫ processing mostly independend
▫ somewhat similar
▫ objects
▫ within a type of pipeline.

• This makes rsyslog, and its problems, similar to
many other (server) applications.

Performance Optimization Project
• rsysog deployed in high demanding data centers
• early v4

▫ could handle 40K mps
▫ scaled very badly on multiple cores

• Project goals
▫ speedup processing of single message
▫ improve scalability

• phase one – winter/spring 2009
 focus of this talk
 resulted in up to 250K mps as reported by some users

Classes of Optimizations

• Traditional optimizations
• Refactoring
• Memory-subsystem based optimizations
• Concurrency-related optimizations

Traditional Optimizations

• The boring stuff, still useful to look at...
• C strings vs. Counted Strings
• Operating System Calls

▫ beware of context switches!
• Buffer Sizes
• More Specific Algorithms

▫ don‘t let seldom-used features constrain often-
used ones

▫ use specific (fast) code for common cases

Code Refactoring

• “time to deliver” was initially dominant
• few external reviewers
• own review, found lots to change, e.g.

▫ Unnecessary parameter formatting due to
“interface” changes

▫ Unnecessarily deep function nesting due to
functionality being shuffled between functions

Refactoring: Design Review
• e.g. the “no worker” really dumb case...

▫ worker pool management was very complex
▫ core design failure: we thought it would be useful to stop

all workers when no work was done
▫ of course, that was wrong:
 keeping one blocking doesn’t require many resources
 but restarting one does!

▫ We removed that capability and got faster and easier to
maintain code with less bug potential

• More potential for this kind of refactoring, e.g. (over-
engineered) network driver layer

Memory-Subsystem: old ideas

• Access to memory is often considered equally
fast
▫ to all memory locations
▫ for both reads and writes
▫ this builds the basis for (almost?) all academic

reasonings on algorithm performance
• It often is assumed that aligned memory access

is always faster than unaligned access

Memory Subsystem: today‘s reality

• Access time is very different depending on
which memory is to access and when

• Writes are much slower than reads
• Unaligned access may be faster for some uses

Memory: important concepts
• locality

▫ spatial
▫ temporal

• working set
▫ minimum amount of memory needed to carry out

a closely related set of activities
▫ for rsyslog: memory needed to receive, filter and

output a message
• goal is to achieve spatial and temporal locality

for the working set!

Memory: malloc subsystem
• try to reduce number of malloc calls
• malloc instead of calloc
• using stack instead of heap where possible (but

makes memory debugging much more difficult)
• (somewhat) larger malloc‘s are OK
• fixed buffers instead of malloc

▫ use common size for fixed alloc inside structure
▫ malloc only if actual size is larger
▫ great for small elements (< 8Byte  ptr size!)

Memory: keep related things together

• Fixed buffers (as shown on last slide)
• Structure packing
• Use bit fields where appropriate (but only then)
• but move unrelated things away from each other

▫ when written to by different threads (counters!)
▫ otherwise cache thrashing may severely affect

performance

Memory: reuse memory regions

• improved buffer management to make it most
likely that a memory region is continously being
accessed by the same thread

• „properties“
▫ objects that keep their value for a relativly long

time (many messages)
▫ allocated and written once, read (very) often
▫ reference counted

Concurrency

• paradigm shift: software must exploit
concurrency directly, single core does not get
much faster

• rsyslog started deploying multi-threading very
early, with some (dumb, again ;-)) mistakes
made

Problem seen in Practice

• Lock contention limited performance
• and decreased performance

▫ when adding additional threads
▫ with fast output processing

• because
▫ lock contention dramatically increased
▫ locks then needed to go to kernel space, what

became the dominating performance factor

Rsyslog Design (rough sketch)
• Concurreny:

▫ Each Input
▫ Queue Workers
▫ Output Modules (potentially)

Classical User Perception of syslog

• sequential
• assumes that sequence of messages in log store

equals sequence of events

Root Cause: Usual Assumptions are
invalid!
• storage sequence does not reflect event sequence

▫ buffering due to unavailble target system
▫ interim systems (including network reordering)
▫ multithreading on any sender or receiver
▫ scheduling order

• in short: sequence can only be preserved in a
toally sequential system, which we do not have
(and do not want!)

So, what‘s the solution to Sequence?

• use a „kind of timestamp“ / order relation
▫ high-precision timestamps inside messages
▫ timestamps with sequence numbers
▫ Lamport Clocks (no implementation so far)

• then, process logs according to the selected
order relation

• bottom line: sequence does not need to be
preserved at the syslogd level, because it
cannot do so!

How this affects rsyslog...
• single most important fact in respect to

rsyslog design and performance
▫ rsyslog‘s initial design tried to preserve message

order as much as possible
▫ severely blocked partitioning of workload

• performance optimization gained benefits from
this insight
▫ now, almost everything could be done highly

concurrent!
▫ (most) often invisible to user
▫ users who don‘t like it, can turn it off

Workload Partitioning
• process messages in batches of many instead of

individually
▫ reduces number of mutex calls dramatically
▫ reduces lock contention even more (less likely)
▫ positive side effects an other items as well
▫ kind of „temporal partitioning“

• multiple „main“ message queues
▫ inputs can submit messages to defined queues
▫ totally independent queues
▫ no locking contention at all between queues

Locking Improvements

• Simplified locking primitives
▫ removed need for recursive mutexes
▫ evaluated code and selected fastest locking

method that did the job
• Atomic operations

▫ replaced locking for simple cases (counters)
▫ will become more important when lock/wait-

freedom is addressed in third tuning effort winter
2010/11

Some other Things

• moved functionality to different pipeline stages
▫ utilizing different levels of concurrency
▫ example: message parsing from input stage to main

queue worker thread
• reduce hidden looks

▫ some subsystems guard operations by locking
▫ calling them thus serializes processing
▫ sample: malloc subsystem, other libraries as well

Architecture after Redesign

Are we done now?
• no, definitely not

▫ still scales far from linear for large number of cores
• second tuning effort done in spring 2010

▫ brought another speedup of four
▫ focussed on common use cases
▫ first „exploration“ of lock-free algorithms

• third effort planned for winter/spring 2010/11
▫ primary focus will be lock-freedom
▫ hopefully will come close to near-linear speedup

Conclusion

• We often needed to look at a very fine-grained
level to achive high-level improvements
▫ We did some of the usual stuff,
▫ refactored some anomalies of a fast growing

project,
▫ took a close look at modern hardware,
▫ but most importantly needed to break with

traditional perception.

Most important lesson learned

Re-evaluating current practice and
questioning old habits is probably a key
ingredient of moving from the mostly

sequential programming paradigm to the
fully concurrent one demanded by current

and future hardware.

Many thanks for your attention

• Questions?

• rgerhards@hq.adiscon.com

	Rsyslog: going up from 40K messages per second to 250K
	Why this talk?
	Introduction to rsyslog
	Folie 4
	What is rsyslog technically?
	Performance Optimization Project
	Classes of Optimizations
	Traditional Optimizations
	Code Refactoring: what changed?
	Code Refactoring: Design Review
	Memory-Subsystem: old ideas
	Memory Subsystem: today‘s reality
	Memory: important concepts
	Memory: malloc subsystem
	Memory: keep related things together
	Memory: reuse memory regions
	Concurrency
	Problem seen in Practice
	Rsyslog Design (rough overview)
	Classical User Perception of syslog
	Root Cause: Usual Assumptions are invalid!
	So, what‘s the solution to Sequence?
	How this affects rsyslog...
	Workload Partitioning
	Locking Improvements
	Some other Things
	Architecture after Redesign
	Are we done now?
	Conclusion
	Most important lesson learned
	Questions?

