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What's in it for you?

• Bad news: will not teach you to make your kernel 
component five times faster

• Perspective
▫ user-space application
▫ going from single core to multi core

• Lessons learned 
▫ things we got wrong
▫ how we improved the situation

• our experiences hopefully useful for other user-
space applications as well



So what is rsyslog?

• modern syslog message processor
• Forked from sysklogd

▫ Some initial coding started 2003
▫ Single-threaded design and pretty old code
▫ But it worked!

• Really got momentum when Fedora looked for a 
new syslogd in 2007

• has become the de-facto standard on most 
distributions



Rsyslog project...

• Design goals – around 2004
▫ Drop-in replacement for sysklogd
▫ Easy to use for simple cases
▫ Powerful for complex cases
▫ High performance and support for tomorrows 

multi-core machines
• Very heavy hacking in 2007 and 2008

▫ Many, many features added
▫ No time to consolidate them



How does rsyslog relate to other 
apps?
• Rsyslog actually is

▫ a message router
▫ processing mostly independend
▫     somewhat similar
▫         objects
▫             within a type of pipeline.

• This makes rsyslog, and its problems, similar to 
many other (server) applications.



Performance Optimization Project
• rsysog deployed in high demanding data centers
• early v4 

▫ could handle 40K mps
▫ scaled very badly on multiple cores 

• Project goals
▫ speedup processing of single message
▫ improve scalability

• phase one – winter/spring 2009
 focus of this talk
 resulted in up to 250K mps as reported by some users



Classes of Optimizations

• Traditional optimizations
• Refactoring
• Memory-subsystem based optimizations
• Concurrency-related optimizations



Traditional Optimizations

• The boring stuff, still useful to look at...
• C strings vs. Counted Strings
• Operating System Calls 

▫ beware of context switches!
• Buffer Sizes
• More Specific Algorithms

▫ don‘t let seldom-used features constrain often-
used ones

▫ use specific (fast) code for common cases



Code Refactoring

• “time to deliver” was initially dominant
• few external reviewers
• own review, found lots to change, e.g.

▫ Unnecessary parameter formatting due to 
“interface” changes

▫ Unnecessarily deep function nesting due to 
functionality being shuffled between functions



Refactoring: Design Review
• e.g. the “no worker” really dumb case...

▫ worker pool management was very complex
▫ core design failure: we thought it would be useful to stop 

all workers when no work was done
▫ of course, that was wrong: 
 keeping one blocking doesn’t require many resources
 but restarting one does!

▫ We removed that capability and got faster and easier to 
maintain code with less bug potential

• More potential for this kind of refactoring, e.g. (over-
engineered) network driver layer



Memory-Subsystem: old ideas

• Access to memory is often considered equally 
fast
▫ to all memory locations
▫ for both reads and writes
▫ this builds the basis for (almost?) all academic 

reasonings on algorithm performance
• It often is assumed that aligned memory access 

is always faster than unaligned access



Memory Subsystem: today‘s reality

• Access time is very different depending on 
which memory is to access and when

• Writes are much slower than reads
• Unaligned access may be faster for some uses



Memory: important concepts
• locality

▫ spatial
▫ temporal

• working set
▫ minimum amount of memory needed to carry out 

a closely related set of activities
▫ for rsyslog: memory needed to receive, filter and 

output a message
• goal is to achieve spatial and temporal locality 

for the working set!



Memory: malloc subsystem
• try to reduce number of malloc calls
• malloc instead of calloc
• using stack instead of heap where possible (but 

makes memory debugging much more difficult)
• (somewhat) larger malloc‘s are OK
• fixed buffers instead of malloc

▫ use common size for fixed alloc inside structure
▫ malloc only if actual size is larger
▫ great for small elements (< 8Byte  ptr size!)



Memory: keep related things together

• Fixed buffers (as shown on last slide)
• Structure packing
• Use bit fields where appropriate (but only then)
• but move unrelated things away from each other

▫ when written to by different threads (counters!)
▫ otherwise cache thrashing may severely affect 

performance



Memory: reuse memory regions

• improved buffer management to make it most 
likely that a memory region is continously being 
accessed by the same thread

• „properties“
▫ objects that keep their value for a relativly long 

time (many messages)
▫ allocated and written once, read (very) often
▫ reference counted



Concurrency

• paradigm shift: software must exploit 
concurrency directly, single core does not get 
much faster

• rsyslog started deploying multi-threading very 
early, with some (dumb, again ;-) ) mistakes 
made



Problem seen in Practice

• Lock contention limited performance
•  and decreased performance

▫ when adding additional threads
▫ with fast output processing

• because
▫ lock contention dramatically increased
▫ locks then needed to go to kernel space, what 

became the dominating performance factor



Rsyslog Design (rough sketch) 
• Concurreny:

▫ Each Input
▫ Queue Workers
▫ Output Modules (potentially)



Classical User Perception of syslog

• sequential
• assumes that sequence of messages in log store 

equals sequence of events



Root Cause: Usual Assumptions are 
invalid!
• storage sequence does not reflect event sequence

▫ buffering due to unavailble target system
▫ interim systems (including network reordering)
▫ multithreading on any sender or receiver
▫ scheduling order

• in short: sequence can only be preserved in a 
toally sequential system, which we do not have 
(and do not want!)



So, what‘s the solution to Sequence?

• use a „kind of timestamp“ / order relation
▫ high-precision timestamps inside messages
▫ timestamps with sequence numbers
▫ Lamport Clocks (no implementation so far)

• then, process logs according to the selected 
order relation

• bottom line: sequence does not need to be 
preserved at the syslogd level, because it 
cannot do so!



How this affects rsyslog...
• single most important fact in respect to 

rsyslog design and performance
▫ rsyslog‘s initial design tried to preserve message 

order as much as possible
▫ severely blocked partitioning of workload

• performance optimization gained benefits from 
this insight
▫ now, almost everything could be done highly 

concurrent!
▫ (most) often invisible to user
▫ users who don‘t like it, can turn it off



Workload Partitioning
• process messages in batches of many instead of 

individually
▫ reduces number of mutex calls dramatically
▫ reduces lock contention even more (less likely)
▫ positive side effects an other items as well
▫ kind of „temporal partitioning“

• multiple „main“ message queues
▫ inputs can submit messages to defined queues
▫ totally independent queues
▫ no locking contention at all between queues



Locking Improvements

• Simplified locking primitives
▫ removed need for recursive mutexes
▫ evaluated code and selected fastest locking 

method that did the job
• Atomic operations

▫ replaced locking for simple cases (counters)
▫ will become more important when lock/wait-

freedom is addressed in third tuning effort winter 
2010/11



Some other Things

• moved functionality to different pipeline stages
▫ utilizing different levels of concurrency
▫ example: message parsing from input stage to main 

queue worker thread
• reduce hidden looks

▫ some subsystems guard operations by locking
▫ calling them thus serializes processing
▫ sample: malloc subsystem, other libraries as well



Architecture after Redesign



Are we done now?
• no, definitely not

▫ still scales far from linear for large number of cores
• second tuning effort done in spring 2010

▫ brought another speedup of  four
▫ focussed on common use cases
▫ first „exploration“ of lock-free algorithms

• third effort planned for winter/spring 2010/11
▫ primary focus will be lock-freedom
▫ hopefully will come close to near-linear speedup



Conclusion

• We often needed to look at a very fine-grained 
level to achive high-level improvements
▫ We did some of the usual stuff,
▫ refactored some anomalies of a fast growing 

project,
▫ took a close look at modern hardware,
▫ but most importantly needed to break with 

traditional perception.



Most important lesson learned

Re-evaluating current practice and 
questioning old habits is probably a key 
ingredient of moving from the mostly 

sequential programming paradigm to the 
fully concurrent one demanded by current 

and future hardware.



Many thanks for your attention

• Questions?

• rgerhards@hq.adiscon.com
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