
GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

OpenBSC network-side GSM stack
running on top of Linux

Harald Welte <laforge@gnumonks.org>

gnumonks.org
gpl-violations.org

OpenBSC
airprobe.org

hmw-consulting.de

Linux Kongress 2009, October 2009, Dresden/Germany

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Outline
1 GSM/3G security

The closed GSM industry
Security implications
The GSM network
The GSM protocols

2 OpenBSC: Implementing GSM protocols
Getting started
OpenBSC software architecture
Code Reuse

3 Security analysis
Theory
The Baseband
Observations

4 Summary
What we’ve learned
Where we go from here
Future Plans
Further Reading

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

About the speaker

Always been fascinated by networking and
communications
Using + playing with Linux since 1994
Kernel / bootloader / driver / firmware development since
1999
IT security specialist, focus on network protocol security
Board-level Electrical Engineering
Always looking for interesting protocols (RFID, DECT,
GSM)

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

GSM/3G protocol security

Observation
Both GSM/3G and TCP/IP protocol specs are publicly
available
The Internet protocol stack (Ethernet/Wifi/TCP/IP) receives
lots of scrutiny
GSM networks are as widely deployed as the Internet
Yet, GSM/3G protocols receive no such scrutiny!

There are reasons for that:
GSM industry is extremely closed (and closed-minded)
Only about 4 closed-source protocol stack implementations
GSM chipset makers never release any hardware
documentation

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

The closed GSM industry
Handset manufacturing side

Only very few companies build GSM/3.5G baseband chips
today

Those companies buy the operating system kernel and the
protocol stack from third parties

Only very few handset makers are large enough to
become a customer

Even they only get limited access to hardware
documentation
Even they never really get access to the firmware source

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

The closed GSM industry
Network manufacturing side

Only very few companies build GSM network equipment
Basically only Ericsson, Nokia-Siemens, Alcatel-Lucent and
Huawei
Exception: Small equipment manufacturers for picocell /
nanocell / femtocells / measurement devices and law
enforcement equipment

Only operators buy equipment from them
Since the quantities are low, the prices are extremely high

e.g. for a BTS, easily 10-40k EUR

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

The closed GSM industry
Operator side

Operators are mainly banks today
Typical operator outsources

Billing
Network planning / deployment / servicing

Operator just knows the closed equipment as shipped by
manufacturer
Very few people at an operator have knowledge of the
protocol beyond what’s needed for operations and
maintenance

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

The closed GSM industry
Security implications

The security implications of the closed GSM industry are:
Almost no people who have detailed technical knowledge
outside the protocol stack or GSM network equipment
manufacturers
No independent research on protocol-level security

If there’s security research at all, then only theoretical (like
the A5/2 and A5/1 cryptanalysis)
Or on application level (e.g. mobile malware)

No open source protocol implementations
which are key for making more people learn about the
protocols
which enable quick prototyping/testing by modifying existing
code

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

Security analysis of GSM
How would you get started?

If you were to start with GSM protocol level security analysis,
where and how would you start?

On the handset side?
Difficult since GSM firmware and protocol stacks are closed
and proprietary
Even if you want to write your own protocol stack, the layer
1 hardware and signal processing is closed and
undocumented, too
Known attempts

The TSM30 project as part of the THC GSM project
mados, an alternative OS for Nokia DTC3 phones

none of those projects successful so far

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

Security analysis of GSM
How would you get started?

If you were to start with GSM protocol level security analysis,
where and how would you start?

On the network side?
Difficult since equipment is not easily available and
normally extremely expensive
However, network is very modular and has many
standardized/documented interfaces
Thus, if equipment is available, much easier/faster progress

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

Security analysis of GSM
The bootstrapping process

Read GSM specs day and night (> 1000 PDF documents)
Gradually grow knowledge about the protocols
Obtain actual GSM network equipment (BTS)
Try to get actual protocol traces as examples
Start a complete protocol stack implementation from
scratch
Finally, go and play with GSM protocol security

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

The GSM network

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

GSM network components

The BSS (Base Station Subsystem)
MS (Mobile Station): Your phone
BTS (Base Transceiver Station): The cell tower
BSC (Base Station Controller): Controlling up to hundreds
of BTS

The NSS (Network Sub System)
MSC (Mobile Switching Center): The central switch
HLR (Home Location Register): Database of subscribers
AUC (Authentication Center): Database of authentication
keys
VLR (Visitor Location Register): For roaming users
EIR (Equipment Identity Register): To block stolen phones

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

GSM network interfaces

Um: Interface between MS and BTS
the only interface that is specified over radio

A-bis: Interface between BTS and BSC
A: Interface between BSC and MSC
B: Interface between MSC and other MSC

GSM networks are a prime example of an asymmetric
distributed network, very different from the end-to-end
transparent IP network.

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

GSM network protocols
On the Um interface

Layer 1: Radio Layer, TS 04.04
Layer 2: LAPDm, TS 04.06
Layer 3: Radio Resource, Mobility Management, Call
Control: TS 04.08
Layer 4+: for USSD, SMS, LCS, ...

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

The closed GSM industry
Security implications
The GSM network
The GSM protocols

GSM network protocols
On the A-bis interface

Layer 1: Typically E1 line, TS 08.54
Layer 2: A variant of ISDN LAPD with fixed TEI’s, TS 08.56
Layer 3: OML (Organization and Maintenance Layer, TS
12.21)
Layer 3: RSL (Radio Signalling Link, TS 08.58)
Layer 4+: transparent messages that are sent to the MS
via Um

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

Implementing GSM protocols
How I got started!

In September 2008, we were first able to make the BTS
active and see it on a phone

This is GSM900 BTS with 2 TRX at 2W output power (each)
A 48kg monster with attached antenna
200W power consumption, passive cooling
E1 physical interface

I didn’t have much time at the time (day job at Openmoko)
Started to read up on GSM specs whenever I could
Bought a HFC-E1 based PCI E1 controller, has mISDN
kernel support
Found somebody in the GSM industry who provided
protocol traces

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

Implementing GSM protocols
Timeline

In November 2008, I started the development of OpenBSC
In December 2008, we did a first demo at 25C3
In January 2009, we had full voice call support
In August 2009, we had the first field test with 2BTS and >
860 phones

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: Overall architecture

implement BSC, MSC, HLR, AUC, SMSC in a box
Single-theaded, select-loop driven design

avoids locking/synchronization complexity
makes debugging much easier
amount of singalling traffic low, scalability on multi-core
systems not a design goal

Use Linux kernel coding style
Have as few external dependencies as possible

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: A-bis OML (GSM TS 08.59 / 12.21)

In order to fully boot and initialize a BTS, the OML
(Organization and Maintenance Layer) needs to be brought up.
It is implemented in OpenBSC abis_nm.c

download/installation + activation of BTS software
RF parameters such as ARFCN, hopping, channel
configuration
RF power level, calibration, E1 timeslot + TEI configuration

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: A-bis RSL (GSM TS 08.58)

The Radio Signalling Link is the signalling layer between BTS
and BSC, implemented in abis_rsl.c

non-transparent messages for BTS-side configuration
channel activation on the BTS side
channel mode / encryption mode on BTS side
paging of MS
setting of BCCH beacons (SYSTEM INFORMATION)

transparent messages to be passed through to MS

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC GSM Layer 3 (GSM TS 04.08)

The GSM Um Layer 3 is established between BSC and MS, the
BTS transparently passes it through RSL DATA INDICATION /
DATA REQUEST, implemented in gsm_04_08_*.c

Radio Resource (RR)
Mobility Management (MM)
Call Control (CC)

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: Input Drivers

Concept of input drivers important, since there are many
different E1 driver models and no clear standard (mISDN,
VISDN, Sangoma, Zaptel)

We so far implement a socket-based input driver to the
Linux kernel mISDN stack
Some proof-of-concept driver for Sangoma exists

ip.access A-bis over IP interface is very different from E1
interface, but can still be supported by the input driver API
Input drivers are not implemented as plugins, as we don’t
want proprietary plugins.

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: mISDN integration

Physical layer of A-bis is a E1 interface
However, Layer 2 is slightly different to Q.921 on ISDN

static TEI assignments, no dynamic TEI’s
different SAPI’s are used for OML, RSL
multiple BTS can be connected to one E1 link, requiring
multiple TEI manager instances to run in different timeslots
on one E1 line

Patches have been contributed to mISDN and are in
mainline

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: Multiple processes/Threads

Currently, there is one single-threaded process for all of
The signalling part (BSC/MSC features)
Database access (HLR/VLR features)
Relaying/remultiplexing of speech data (TRAU + RTP
frames)
SMS store-and-forward (SMSC features)

Single-threaded select loop is great for signalling
TRAU + RTP multiplexing / relaying should become
separate media gateway process
SMSC features should become independent process, too.

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: Database model

The HLR, EIR, SMSC are simple SQL tables
subscribers is the HLR (IMSI, phone number, tmsi,
location area)
equipment is the EIR (IMEI, classmark1/2/3)
sms is the SMSC, one row for each SMS

At the moment, only SQLite3 is used (simplicity)
DBD layer will enable easy migration to postgresql or
MySQL

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: Code reuse

Configuration file + interactive terminal: Reuse the VTY
code from zebra/quagga project

"configure terminal; enable" style interface known to many
network administrators
no need to handle persistent configuration different than
run-time configuration

Linked Lists: Imported code + API from Linux list_head
Timers: Imported code + A PI from Linux kernel
Core select loop handling: Stolen frm ulogd2
(netfilter/iptables)
Database interface: Use dbi and dbd-sqlite3

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: Voice call integration

Integration with lcr (Linux Call Router)
Uses the OpenBSC codebase as library (libbsc.a)
Uses the ’call switching API’ (MNCC) inside OpenBSC
Allows switching between ISDN and OpenBSC-based GSM
Has itself an interface for Asterisk VoIP

Integration with Asterisk chan_obenbsc
Directly integrate OpenBSC as Asterisk channel driver
Ongoing effort by some community members
Interesting from a Licensing point of view !

Integration with actual MSC
Allows OpenBSC to be used as true BSC in real GSM
network

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC: GPRS support

GPRS support is currently under active development
Contrary to public belief, GPRS has very little relation to
GSM beyond the physical layer
OpenBSC is implementing SGSN and GGSN functionality
for a GPRS network in a box apprach
GPRS protocol stack of phone-originated HTTP request on
a nanoBTS:

HTTP inside TCP inside IP (regular TCP/IP stack)
inside PPP, SNDCP and LLC (adaption of IP onto Um)
inside BSSGP and NS (Gb interf BTS - SGSN)
inside UDP inside IP inside Ethernet (ip.access
encapsulation)

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Getting started
OpenBSC software architecture
Code Reuse

OpenBSC commercial interest

On-Waves Inc. (Iceland), deploying small GSM networks
like e.g. aboard ships

funding the development of a functional split between
MSC/BSC to use OpenBSC as a true BSC (without
MSC/HLR/SMSC/...)
funding the development of the A interface (the BSC-BTS
network protocol stack)

Netzing AG (Dresden/Germany), GSM networks for
emergency applications

funding the development of ip.access nanoBTS support

However, OpenBSC remains primarily a research tool for
research use.

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Theory
The Baseband
Observations

Known GSM security problems
Scientific papers, etc

No mutual authentication between phone and network
leads to rogue network attacks
leads to man-in-the-middle attacks
is what enables IMSI-catchers

Weak encryption algorithms
Encryption is optional, user does never know when it’s
active or not
DoS of the RACH by means of channel request flooding
RRLP (Radio Resource Location Protocol)

the network can obtain GPS fix or even raw GSM data from
the phone
combine that with the network not needing to authenticate
itself

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Theory
The Baseband
Observations

Known GSM security problems
The Baseband side

GSM protocol stack always runs in a so-called baseband
processor (BP)
What is the baseband processor

Typically ARM7 (2G/2.5G phones) or ARM9 (3G/3.5G
phones)

Runs some RTOS (often Nucleus, sometimes L4)
No memory protection between tasks

Some kind of DSP, model depends on vendor
Runs the digital signal processing for the RF Layer 1
Has hardware peripherals for A5 encryption

The software stack on the baseband processor
is written in C and assembly
lacks any modern security features (stack protection,
non-executable pages, address space randomization, ..)

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

Theory
The Baseband
Observations

Interesting observations
Learned from implementing the stack

While developing OpenBSC, we observed a number of
interesting

Many phones use their TMSI from the old network when
they roam to a new network
Various phones crash when confronted with incorrect
messages. We didn’t even start to intentionally send
incorrect messages (!)
There are tons of obscure options on the GSM spec which
no real network uses. Potential attack vector by using
rarely tested code paths.

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

What we’ve learned
Where we go from here
Future Plans
Further Reading

Summary
What we’ve learned

Until recently, there was no Open Source software for GSM
protocols
It is well-known that the security level of the GSM stacks is
very low
The GSM industry is making security analysis very difficult
With OpenBSC and OpenBTS we now have tools for
everyone

to learn more about and experiment with GSM protocols
to actually study protocol-level GSM security
to do penetration testing against GSM protocol stacks in
phones

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

What we’ve learned
Where we go from here
Future Plans
Further Reading

TODO
Where we go from here

The tools for fuzzing mobile phone protocol stacks are
available
It is up to the security community to make use of those
tools (!)
Don’t you too think that TCP/IP security is boring
Join the GSM protocol security research projects
Boldly go where no (free) man has gone before

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

What we’ve learned
Where we go from here
Future Plans
Further Reading

Future plans

Complete packet data (GPRS/EDGE) support in OpenBSC

GPRS is used extensively on modern smartphones
Enables us to play with those phones without a heavily
filtered operator network

UMTS(3G) support in OpenBSC
Access to MS side layer 1
Playing with SIM Toolkit from the operator side
Playing with MMS
More exploration of RRLP

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack



GSM/3G security
OpenBSC: Implementing GSM protocols

Security analysis
Summary

What we’ve learned
Where we go from here
Future Plans
Further Reading

Further Reading

http://openbsc.gnumonks.org/
http://airprobe.org/
http://openbts.sourceforge.net/
http://wiki.thc.org/gsm/

Harald Welte <laforge@gnumonks.org> OpenBSC network-side GSM stack


	GSM/3G security
	The closed GSM industry
	Security implications
	The GSM network
	The GSM protocols

	OpenBSC: Implementing GSM protocols
	Getting started
	OpenBSC software architecture
	Code Reuse

	Security analysis
	Theory
	The Baseband
	Observations

	Summary
	What we've learned
	Where we go from here
	Future Plans
	Further Reading


