Linux multi-core scalabllity

Oct 2009

Andi Kleen
Intel Corporation
andi@firstfloor.org

Overview

O Scalability theory

O Linux history

0 Some common scalability trouble-spots

O Application workarounds

Motivation

O CPUs still getting faster single-threaded
O But more performance available by going parallel

Othreaded CPUs dual-core quad-core hexa-core octo-core ...

0 64-128 logical CPUs on standard machines upcoming
> Cannot cheat on scalability anymore
o High end machines larger

> Rely on limited workloads for now

OMemory sizes are growing

o Each CPU thread needs enough memory for its data (~1GB/thread)
O Multi-core servers support a lot of memory (64-128GB)

> Servers systems going towards TBs of RAM maximum

O Large memory size is a scalability problem
> Especially with 4K pages
> Some known problems in older kernels ("split LRU")

Terminology

O Cores
o Core inside a CPU

O Threads (hardware)
O Multiple logical CPU per threaded core

O Sockets
o CPU package

O Nodes
o NUMA node with same memory latency

Systems

CPUs Visible CPUs Memory |Description

2 cores 2 2GHB |Low end x86 desktop system 2008

4 cores x 2 threads x 2 sockets |8 4-8GHB |Middle-end x86 desktop system 2009
4 cores x 2 threads x 2 sockets |16 8-32GB [Standard low end x86 server 2009

6 cores x 4 sockets 24 32-128GH |Standard 4 socket x86 server 2009

& cores x 2 threads x 4 sockets |64 128-512GB [Standard 4 socket x86 server 2010

8 cores x 2 threads x 8 sockets [128 128GB-1TB |8 socket x36 server 2010

2 cores x 32 sockets 6 512GB-2TB [High end commercial server 2008

2 cores x 512 sockets 1024 =1TH |Super computer 2(H}7

Table 1: Linux systems and their CPU numbers

Laws

OAmdahl’'s law:
o Parallelization speedup limited by performance of serial part

O Amdahl assumes that data set size stays the same

O In practice we tend to be more guided by Gustafson’s law

O More cores/memory allow to process larger datasets
o Easier more coarse grained parallelization

Parallelization classification

O Single job improvements
O For example weather model
o Parallelization of long running algorithm
O Not covered here

O"Library style" / "server style" of tuning

o Providing short lived operations for many parallel users
o Typical for kernels, network servers, some databases (OLTP)

>"requests” "syscalls" "transactions"
o Key is to parallelize access to shared data structures
> Let individual operations run independently
o Usually no need to parallelize inside individual operations

Parallel data access tuning stages

Goal: Let threads run independent

O Code locking "first step”
O One single lock per subsystem acquired by all code
o Limits scaling
O Coarse grained data locking "lock data not code"
O More locks: object locks, hash table lock
O Reference counters to handle object lifetime
O Fine grained data locking (optional)
o Even more locks (multiple per object)
o Per bucket lock in a hash
O Fancy locking (only for critical paths)

O Minimize communication (avoid false sharing)

o per-CPU data

o NUMA locality

O Lock less: relying on ordered updates, Read-Copy-Update (RCU)

Communication latency

O For highly tuned parallel code often latency is the limiter
o Time to bounce the lock/refcount cache line from core A to B

> Cost depends on distance

o Adds up with fine-grained locking
o Physical limitations due to signal propagation delays
O Solution is to localize data or do less locks

O Good news Is that in the multli core future latencies are lower
o Compared to traditional large MP systems

O Multi-core has very fast communication inside the chip

o "shared caches"
O Modern interconnects are faster, lower latency

> But going off-chip is still very costly
O Lower latencies tolerate more communication

o Modern multi-core system of equivalent size is easier to program

Problems & Solutions

O Parallelization leads to more complexity, more bugs
o Adds overhead for single thread
O Better debugging tools to find problems

>lockdep, tracing, kmemleak
O Locks, atomic operations add overhead

O Atomic operations are slow and synchronization costs
o Number of locks taken for simple syscalls high and growing

O Compile time options (for embedded), code patching

O Problem: small multi-core vs large MP system
o Still doesn’t solve inherent complexity

O Lock less techniques (help scaling, but even more complex)
O Code patching for atomic operations

The locking cliff

O Still could fall off the locking cliff
o Overhead of locking, complexity gets worse with more tuning
o Can make further development difficult

O Sometimes solution is to not tune further

O If use case is not important enough
o Or speedup not large enough

O Or use new techniques

O lock-less approaches
o Radically new algorithms

a

Linux scalabllity history

0 2.0 big kernel lock for everything

2.2 big kernel lock for most of kernel, interrupts own locks
O First usage on larger systems (16 CPUSs)

0 2.4 more fine grained locking, still several common global locks
o a lot of distributions back ported specific fixes

[02.6 serious tuning, ongoing
O New subsystems (multi queue scheduler, multi flow networking)
O Very few big kernel lock users left
O A few problematic locks like dcache, mm_sem
o Advanced lock-less tuning (Read-Copy-Update, others)

O For more detalls see paper

Big Kernel Lock (BKL)

O Special lock that simulates old "explicit sleeping" semantics
o Still some users left in 2.6.31
O But usually not a serious problem (except on RT)

O File descriptor locking (flock et.al.)
0 Some file systems (NFS, reiser)
O ioctls, some drivers, some VFS operations

O Not worth fixing for old drivers

VES

O In general most 10O is parallel
O Depending on the file system, block driver

O namespace operations (dcache, icache) still have code locks

o When creating path names for example
oinode lock / dcache lock
o Some fast paths in dcache (nearly) lock-less when nothing changes

> Read only open faster
> Still significant cache line bouncing
> Can significantly limit scalability

O Effort under way to fine grain dcache/inode locking

o Difficult because lock coverage is not clearly defined
O Adds complexity

Memory management scaling

O In general scales well between processes
O On older kernels make sure to have enough memory/core

O Coarse grained locking inside a process (struct mm_ struct)

O mm_sem semaphore to protect virtual memory mapping list
O page_table_lock to protect page tables
o Problems with parallel page faults, parallel brk/mmap

Omm_sem is a sleeping lock

O Most page fault operations (including zeroing) hold
o Convoying problems

O Problem for threaded HPC jobs, postgresq|

Network scaling

0 1Gbit/s can be handled by single core on PC class
O ... unless you use encryption
O But 10Ghbit/s still challenging

O Traditional single send queue, single receive queue per network
card

o Serializes sending, receiving

O Modern network cards support multi-queue

o Multiple send (TX) queues to avoid contention while sending
O Multiple receive (RX) queues to spread flows over CPUs

0 Ongoing work in the network stack for better multi queue

O RX spreading requires some manual tuning for now
O Not supported in common production kernels (RHELDS)

Application workarounds |

O Scaling a non parallel program
O Use Gustafson’s law! Work on more data files
o gcc: make -j$(getconfig NPROCESSORS ONLN)

> Requires proper Makefile dependencies
o media encoder for more files:

>find -name *.foo’ | xargs -nl -P$(getconf NPROCESSORS_ONLN) encoder
o Renderer:

>render multiple pictures

O Multi threaded program that does not scale to system size

O For example popular open source database
o Limit parallelism to its scaling limit

> Requires load tests to find out
o Possibly run multiple instances

Application workarounds ||

O Run multiple instances ("cluster in a box")
O Can use containers or virtualization
O Or just use multiple processes

O Run different programs on same system

O "server consolidation"
O Saves power and is easier to administrate
o Often more reliable (but single point of failure too)

O Or keep cores idle until needed

O Some spare capacity for peak loads is always a good idea
o Not that costly with modern power saving

Conclusions

O Multi-core Is hard

O Linux kernel is well prepared
O but still some more work to do

O Application tuning is the biggest challenge
- o Is your application well prepared for multi-core?

O Standard toolbox of tuning techniques available

Resources

O Paper: http://halobates.de/lk09-scalability.pdf

O Has more details in some areas

O Linux kernel source

OA lot of literature on parallelization available

Oandi@firstfloor.org

Backup

Parallelization tuning cycle

O Measurement
O Profilers: oprofile, lockstat

OAnalysis

o ldentify locking, cache line bouncing hot spots
O Simple tuning

O Move to next tuning stage
O Measure again

O Stop or repeat with fancier tuning

