
telefaks* application server for
FreeSWITCH

Peter Steinbach

Mein50Plus GmbH
Theo-Geisel-Str. 25
Usingen, Germany, 61250
Tel.: +49 6081 688 533
www.telefaks.de
Information@telefaks.de

Introduction

• This presentation is all about telephony serices for
– VoIP
– POTS
– Google Talk / Jabber
– Messaging

• Building telephony services based on
– OpenSource software
– Standard server hardware

3

Who we are

• Coming from Asterisk

• On Freeswitch since beg. of June 2008

• Transferred all our applications to Freeswitch since then

• Strong focus on

– Integrating Freeswitch
– Ruby and Rails Development
– Encryption

Freeswitch- the new swiss knife for
VoIP (1)
• FreeSWITCH is a new alternative to Asterisk
• Developed by people who wanted to have a better code base

compared to Asterisk and a better and more flexible structure
• Advantages

– Call volume per server (3000+)
– Configuration by XML instead of sometimes difficult Asterisk-Syntax
– Higher stability at high call volumes
– Better central administration by webservices
– Several virtual PBXs on one server
– Simpler call routing in bigger installations
– Encryption via TLS and SRTP (currently the only OpenSource solution)

• Disadvantages
– General available GUI missing, configuration via XML files
– Not as established on the market compared to Asterisk (but more stable in

produktion)

• Outlook
– Will become one of the standards for larger installations

Freeswitch- the new swiss knife for
VoIP (2)
Can be used as:
• VoIP-Switch
• VoIP-Router
• IVR-System
• Phone conference server
• PBX
• B2BUA(Back to back user agent)
• Session border controller
• Basic Topology Hiding Session Border Controller,
• Application Server (VoiceMail, Konferenz, IVR)
• Integration platform
• Register proxy

Freeswitch- the new swiss knife for
VoIP (3)
Availability:
• Mostly all Linux platforms
• Sun Solaris / OpenSolaris
• Windows
• Mac OS X
• BSD

Freeswitch- the new swiss knife for
VoIP (4)
Key points
• Scalability
• Built-in redundancy mechanisms
• Supports a number of communication protocols (incl.

Jabber und Skype)
• Encryption of Voice (SRTP) and call setup (TLS)
• Voice codecs up to 48KHz
• A number of interfaces for configuration and call

control (synchroneous and asynchroneous), perfect
for dynamic call routing

• Word recognition (Sphinx)
• Text-To-Speech via Cepstral TTS

Freeswitch-Highlights (1)

Skalability
• ~ 3000 simultaneous Calls including media
• Factor >> 10 with media outside Freeswitch
• Built-in redundancy mechanisms via XML-Curl for

configuration and call control

telefaks* application server

Why an application server
framework?
• Our Freeswitch projects usually have a larger scale than

e.g. an Asterisk PBX

• A single Freeswitch is per default configured by XML files

• On top there exists a number of interfaces for
configuration and synchroneous/asynchroneous call
control

• Integrating large projects therefore requires a lot of
groundwork to be done

• Some nice GUIs exist already, each one targeting a
dedicated scenario (e.g. PBX, Callcenter)

• however, a system which will cover all scenarios by
100% will most probably never exist

Bottom line

We need a framework
to abstract functionalities for

integrating large Freeswitch projects

What is basically needed for that?

• Administration GUI

• Handling of more than one freeswitch server

• Customer hierarchies

• IVR functionalities

• Callcenter support

• Asynchroneous call handling

• Realtime interface with web browser (e.g. push
status)

What is it built of

• Freeswitch of course

• some Ruby processes for interfacing with Freeswitch

• Ruby on Rails for the web interface

• Javascript and AJAX for the web interface

• a bit of LUA

• a push server

(Ruby on Rails and performance? We will see that later)

What ist covers

• Support of multiple Freeswitch servers
• Basic PBX functionalities (is needed almost everywhere)
• Conferencing (setup and „live“ management)
• Call Queues
• Callback/dialthru
• IVR State machine with setup via GUI
• Callcenter workflows with direct interaction between browser

and freeswitch
• TTS and ASR Support
• Encryption of calls (TLS/SRTP)
• Complex routing algorithms for larger networks
• Prepared for billing functionalities
• Channel Spy
• Custom applications
• Interface to SyncML ... more

How it's designed

29.10.09

PBX
functionalities

Sample PBX functionalities

• Serve multiple clients
• Clients can be spread over multiple instances of Freeswitch
• User administration with client hierarchies
• Management of SIP endpoints
• Voicemail
• Call forwarding (parallel + sequential hunting)
• Short numbers for each endpoint
• One-time numbers (or n times usage), obfuscated numbers
• Dialthru/Callback
• Special numbers
• Conferences
• Call queues
• Encryption TLS/SRTP
• ... more

Sample PBX functionalities

Sample Conferencing
functionalities
• Conference definition

Sample Conferencing
functionalities
• Conference live management

Sample PBX functionalities

• Operator Panel (still in development, Jan / 2010)
– similar to „Flash Operator Panel“ for Asterisk
– initiate, answer, transfer and drop calls via „Drag and Drop“

(see example videos)

29.10.09

IVR
functionalities

IVR Callback and Callthru application
Step1: Draw the workflow

Goal:
• Identify client/caller
• Hangup, then store callback number if client is callback customer
• Next step: callback to the client
• Offer to enter target number via DTMF and connect the call

IVR Functionalities

• Built-in state machine for defining IVRs and other workflows
• IVRs are defined the following way:

– Step 1: Draw the callflow as UML state diagramm
• define actions
• define transitions

– Step 2: Upload UML state diagram to the application server
– Step 3: Specify actions for each state on the web GUI
– Step 4: Test the state machine on the web GUI (html)
– Step 5: Take the state machine into production (now with voice)

IVR Functionalities

• Interaction with the caller
– Play sound files or external sound streams (play multiple files and

variables)
– Text to speech
– Read DTMF
– Voice menus (DTMF)
– Record users voice and playback later
– Word recognition (ASR)
– Answer a call
– Hangup a call
– Dial a number
– Transfer a call
– Numerous customized actions

• ++ Numerous asynchroneous actions during a call
• early media mode for some actions

IVR Callback and Callthru applikation
Step2: Specify actions in detail

IVR Callback and Callthru applikation
Step 2: Test workflow on the web browser

29.10.09

Callcenter
functionalities

Callcenter application framework

• Extension to IVR Application
• Webbrowser initiates actions on Freeswitch
• Freeswitch pushes data to the web browser (AJAX push

services)
• Interactions to Freeswitch

– Dial a number from a database
– Answer a call
– Play messages
– Start recording
– Stop recording
– Forward call
– Hangup Call

• Push services to the web browser
– Show status of a call
– Alert incoming calls
– Open CRM window

29.10.09

Sample callcenter application:
Step 1: Define Workflow

Get new number
from the database

control recording

Save to database via database profiles

User input defines
next steps

Forms

29.10.09

Sample callcenter application:
Step 2: Define Forms

Define new form elements Preview new form

29.10.09

Sample callcenter application:
Step 3: Run workflow

History

29.10.09

Push services

Push services

• every GUI user has an assigned phone number
• web browser registers on this phone number
• web browser gets status pushed from Freeswitch

– Example: successful hangup

• Incoming call:

• Active call:

29.10.09

Customizing
your application

Call Routing with regular
expressions

Call handling via templates

 <!-- start a generic conference with the settings of the "default" conference profile -->

 <!-- Target No $target_number$ -->

 <extension name="conference $conference_name$">

 <condition field="destination_number" expression="^(\d+)$">

 <action application="set" data="dialplan_comment=$dialplan_comment$"/>

 <!-- this is filled up with external participiants and a hangup hook if needed -->

 $conference_inivitations$

 <action application="answer"/>

 <action application="send_display" data="Conference $1"/>

 <action application="conference" data="$conference_number$@$context$"/>

 </condition>

 </extension>

• Application server defines additional variables
• Variables are expanded at runtime

Customizing your own applications
Example: Wikipedia
• Special numbers can be used to trigger own dialplan actions
• dialplan actions can be XML templates or customized Ruby code

Customizing your own applications
Example: Wikipedia
def self.speak_wikipedia(search_exp)

 text=self.get_wikipedia_text(search_exp)

 master="<action application=\"speak\" data=\"cepstral|katrin|$text$\"/>\n"

 erg= "<!-- Wikipedia entry to speak: '#{search_exp}' -->\n"

 if text

 text.each do |line|

 if !line.strip.empty?

 erg+=master.gsub("$text$", line)

 end

 end

 end

 erg

end

Some examples for customizing

• Wikipedia as shown before
• Speak selected content of news sites
• Speak RSS feeds
• Speak file contents
• Speak meter values from external interfaces
• Access calendar from SyncML (Funambol)
• Intercom, global announcements
• Reverse internet CID lookup

Performance

• using caching techniques whereever applicable
– „Memcache“ allows distributed caching over multiple servers

• Tested under High Load
– up to 250 call setups per second out of the box on a Dual Core AMD

2,5GHz (caching enabled)
– up to 160 call setups per second out of the box on a Dual Core AMD

2,5GHz (caching disabled)

• Outlook:
– scales well with the number of processors (processes are CPU

intensitive)
– scales well with the number of machines (http cluster techniques used)
– Further performance improvement with Ruby 1.9 and optimized, self-

compiled Ruby binaries

Thank you!

Peter Steinbach
steinbach@telefaks.biz

Hans-Jürgen Bornhorst
bornhorst@telefaks.biz

mailto:steinbach@telefaks.biz
mailto:bornhorst@telefaks.biz

	Vorstellung telefaks*de
	Folie 2
	Übersicht
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42

