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Introduction

• This presentation is all about telephony serices for
– VoIP
– POTS
– Google Talk / Jabber
– Messaging

• Building telephony services based on
– OpenSource software
– Standard server hardware
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Who we are

• Coming from Asterisk

• On Freeswitch since beg. of June 2008

• Transferred all our applications to Freeswitch since then

• Strong focus on 

– Integrating Freeswitch
– Ruby and Rails Development
– Encryption



Freeswitch- the new swiss knife for 
VoIP (1)
• FreeSWITCH is a new alternative to Asterisk
• Developed by people who wanted to have a better code base 

compared to Asterisk and a better and more flexible structure 
• Advantages

– Call volume per server (3000+)
– Configuration by XML instead of sometimes difficult Asterisk-Syntax
– Higher stability at high call volumes
– Better central administration by webservices 
– Several virtual PBXs on one server
– Simpler call routing in bigger installations
– Encryption via TLS and SRTP (currently the only OpenSource solution)

• Disadvantages
– General available GUI missing, configuration via XML files
– Not as established on the market compared to Asterisk (but more stable in 

produktion)

• Outlook
– Will become one of the standards for larger installations



Freeswitch- the new swiss knife for 
VoIP  (2)
Can be used as:
• VoIP-Switch
• VoIP-Router
• IVR-System
• Phone conference server
• PBX
• B2BUA(Back to back user agent)
• Session border controller
• Basic Topology Hiding Session Border Controller,
• Application Server (VoiceMail, Konferenz, IVR)  
• Integration platform
• Register proxy



Freeswitch- the new swiss knife for 
VoIP  (3)
Availability:
• Mostly all Linux platforms
• Sun Solaris / OpenSolaris
• Windows
• Mac OS X
• BSD



Freeswitch- the new swiss knife for 
VoIP  (4)
Key points
• Scalability
• Built-in redundancy mechanisms
• Supports a number of communication protocols (incl. 

Jabber und Skype)
• Encryption of Voice (SRTP) and call setup (TLS)
• Voice codecs up to 48KHz
• A number of interfaces for configuration and call 

control (synchroneous and asynchroneous), perfect 
for dynamic call routing

• Word recognition (Sphinx)
• Text-To-Speech via Cepstral TTS



Freeswitch-Highlights (1)

Skalability
• ~ 3000 simultaneous Calls including media
• Factor >> 10 with media outside Freeswitch 
• Built-in redundancy mechanisms via XML-Curl for 

configuration and call control



 

telefaks* application server



Why an application server 
framework?
• Our Freeswitch projects usually have a larger scale than 

e.g. an Asterisk PBX

• A single Freeswitch is per default configured by XML files

• On top there exists a number of interfaces for 
configuration and synchroneous/asynchroneous call 
control

• Integrating large projects therefore requires a lot of 
groundwork to be done

• Some nice GUIs exist already, each one targeting a 
dedicated scenario (e.g. PBX, Callcenter)

• however, a system which will cover all scenarios by 
100% will most probably never exist



Bottom line

We need a framework 
to abstract functionalities for 

integrating large Freeswitch projects



What is basically needed for that?

• Administration GUI

• Handling of more than one freeswitch server

• Customer hierarchies

• IVR functionalities

• Callcenter support

• Asynchroneous call handling

• Realtime interface with web browser (e.g. push 
status)



What is it built of

• Freeswitch of course

• some Ruby processes for interfacing with Freeswitch

• Ruby on Rails for the web interface

• Javascript and AJAX for the web interface

• a bit of LUA

• a push server

(Ruby on Rails and performance? We will see that later)



What ist covers

• Support of multiple Freeswitch servers
• Basic PBX functionalities (is needed almost everywhere)
• Conferencing (setup and „live“ management)
• Call Queues
• Callback/dialthru
• IVR State machine with setup via GUI
• Callcenter workflows with direct interaction between browser 

and freeswitch
• TTS and ASR Support
• Encryption of calls (TLS/SRTP)
• Complex routing algorithms for larger networks
• Prepared for billing functionalities
• Channel Spy
• Custom applications
• Interface to SyncML ... more



How it's designed
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PBX
functionalities



Sample PBX functionalities

• Serve multiple clients
• Clients can be spread over multiple instances of Freeswitch
• User administration with client hierarchies
• Management of SIP endpoints
• Voicemail
• Call forwarding (parallel + sequential hunting)
• Short numbers for each endpoint
• One-time numbers (or n times usage), obfuscated numbers
• Dialthru/Callback
• Special numbers
• Conferences
• Call queues
• Encryption TLS/SRTP
• ... more



Sample PBX functionalities



Sample Conferencing 
functionalities
• Conference definition



Sample Conferencing 
functionalities
• Conference live management



Sample PBX functionalities

• Operator Panel (still in development, Jan / 2010)
– similar to „Flash Operator Panel“ for Asterisk
– initiate, answer, transfer and drop calls via „Drag and Drop“

(see example videos)
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IVR
functionalities



IVR Callback and Callthru application
Step1: Draw the workflow

Goal:
• Identify client/caller
• Hangup, then store callback number if client is callback customer
• Next step: callback to the client
• Offer to enter target number via DTMF and connect the call



IVR Functionalities

• Built-in state machine for defining IVRs and other workflows
• IVRs are defined the following way:

– Step 1: Draw the callflow as UML state diagramm
• define actions 
• define transitions

– Step 2: Upload UML state diagram to the application server
– Step 3: Specify actions for each state on the web GUI
– Step 4: Test the state machine on the web GUI (html)
– Step 5: Take the state machine into production (now with voice)



IVR Functionalities

• Interaction with the caller
– Play sound files or external sound streams (play multiple files and 

variables)
– Text to speech
– Read DTMF
– Voice menus (DTMF)
– Record users voice and playback later
– Word recognition (ASR)
– Answer a call
– Hangup a call
– Dial a number
– Transfer a call
– Numerous customized actions

• ++ Numerous asynchroneous actions during a call
• early media mode for some actions



IVR Callback and Callthru applikation
Step2: Specify actions in detail



IVR Callback and Callthru applikation
Step 2: Test workflow on the web browser
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Callcenter
functionalities



Callcenter application framework

• Extension to IVR Application
• Webbrowser initiates actions on Freeswitch
• Freeswitch pushes data to the web browser (AJAX push 

services)
• Interactions to Freeswitch

– Dial a number from a database
– Answer a call
– Play messages 
– Start recording
– Stop recording
– Forward call
– Hangup Call

• Push services to the web browser
– Show status of a call
– Alert incoming calls
– Open CRM window
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Sample callcenter application: 
Step 1: Define Workflow

Get new number 
from the database

control recording

Save to database via database profiles

User input defines
next steps

Forms
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Sample callcenter application:  
Step 2: Define Forms

Define new form elements Preview new form
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Sample callcenter application: 
Step 3: Run workflow

History
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Push services



Push services

• every GUI user has an assigned phone number
• web browser registers on this phone number
• web browser gets status pushed from Freeswitch

– Example: successful hangup

• Incoming call:

• Active call:
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Customizing 
your application



Call Routing with regular 
expressions



Call handling via templates

    <!-- start a generic conference with the settings of the "default" conference profile -->

    <!-- Target No $target_number$ -->

    <extension name="conference $conference_name$">

      <condition field="destination_number" expression="^(\d+)$"> 

        <action application="set" data="dialplan_comment=$dialplan_comment$"/>

        <!-- this is filled up with external participiants and a hangup hook if needed -->

        $conference_inivitations$ 

        <action application="answer"/>

        <action application="send_display" data="Conference $1"/>

        <action application="conference" data="$conference_number$@$context$"/>

      </condition>

    </extension>

• Application server defines additional variables 
• Variables are expanded at runtime



Customizing your own applications
Example: Wikipedia
• Special numbers can be used to trigger own dialplan actions
• dialplan actions can be XML templates or customized Ruby code



Customizing your own applications
Example: Wikipedia
def self.speak_wikipedia(search_exp)

    text=self.get_wikipedia_text(search_exp)

    master="<action application=\"speak\" data=\"cepstral|katrin|$text$\"/>\n"

    erg= "<!-- Wikipedia entry to speak: '#{search_exp}' -->\n"

    if text

        text.each do |line|

            if !line.strip.empty?

                erg+=master.gsub("$text$", line)

            end

        end

    end

    erg

end



Some examples for customizing

• Wikipedia as shown before
• Speak selected content of news sites
• Speak RSS feeds
• Speak file contents
• Speak meter values from external interfaces
• Access calendar from SyncML (Funambol)
• Intercom, global announcements
• Reverse internet CID lookup



Performance

• using caching techniques whereever applicable 
– „Memcache“ allows distributed caching over multiple servers

• Tested under High Load 
– up to 250 call setups per second out of the box on a Dual Core AMD 

2,5GHz (caching enabled)
– up to 160 call setups per second out of the box on a Dual Core AMD 

2,5GHz (caching disabled)

• Outlook:
– scales well with the number of processors (processes are CPU 

intensitive)
– scales well with the number of machines (http cluster techniques used)
– Further performance improvement with Ruby 1.9 and optimized, self-

compiled Ruby binaries



Thank you!

Peter Steinbach
steinbach@telefaks.biz

Hans-Jürgen Bornhorst
bornhorst@telefaks.biz
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