
Ext4, btrfs, and the others

Jan Kára <jack@suse.cz>

SUSE Labs, Novell

© Novell Inc. All rights reserved

2

Outline

Challenges to tackle

Design of ext4 and btrfs

Some performance numbers

Other filesystems – reiser4, ocfs2, ubifs

© Novell Inc. All rights reserved

3

Challenges to tackle

Storage grows larger, throughput and seek time do not
change that much

Directories and files grow larger

Rate of error per sector stays the same

SSDs

Demand for new features
Snapshots

Clustering

Ext4 design

© Novell Inc. All rights reserved

5

Ext4 basics

Successor of ext3

Shares 'philosophy' of disk layout with ext3 – standard
Unix filesystem

Backward compatible by default

Quite stable, although still less stable than ext3

© Novell Inc. All rights reserved

6

Global structure

Filesystem divided into groups
Allocation locality

Each group has its inode table, inode bitmap, block
bitmap

Flexible block groups

Number of inodes still fixed at filesystem creation time

Some groups have a copy of superblock and group
descriptors (sparse super feature)

48-bit block numbers

© Novell Inc. All rights reserved

7

Inodes

Inode size increased from 128 to 256 bytes
Only for newly created filesystems

High precision timestamps

More space for inline EA

New way of tracking blocks carrying data – extents

struct ext4_extent {
 __le32 ee_block;
 __le16 ee_len;
 __le16 ee_start_hi;
 __le32 ee_start_lo;
};

© Novell Inc. All rights reserved

8

Extent tree

Inode and indirect blocks carry a b-tree of extents

Inode space

0 1123 5301 -

Extents for 0 - 1122 Extents for 1123 - 5300 Extents for 5300 - EOF

© Novell Inc. All rights reserved

9

Directories

Inodes containing directory entries

Search tree on top of directory to speed up lookup
Hidden in special directory entries

Slow down when scanning whole directories

© Novell Inc. All rights reserved

10

Journaling

Allows fast filesystem recovery after a crash

New transaction checksum feature
Does not prevent fs corruption, only reduces impact

© Novell Inc. All rights reserved

11

Delayed allocation

Blocks for data (and metadata) allocated only when
kernel decides to write out data to disk

When blocks are written, space and quota is only
reserved

More blocks allocated at once

Better coalescing of random writes

Data gets later to disk

© Novell Inc. All rights reserved

12

Multiblock allocator

Aims to reduce fragmentation and allocate large chunks
of blocks quickly

Buddy allocator in the core
Allocates aligned chunks of 2^n blocks

32 blocks

164 44 8
Allocate 3 blks

1644 8

1644 8
Allocate 6 blks

Allocate 3 blks

Allocate 7 blks
844 8 8

Buddy bitmaps only in memory generated from block
bitmap

© Novell Inc. All rights reserved

13

Multiblock allocator (cont.)

Before allocation we estimate the final file size and
continue with allocation for that many blocks

Buddy allocator enhanced with preallocation lists to use
unused space in buddies

Per inode preallocation list

Per locality group preallocation
/sys/fs/ext4/<dev>/mb_stream_req

Logic to handle case when there is no buddy large
enough to satisfy the allocation

Several rounds of allocation, each round scans groups starting
with the goal group

In each round we weaken our requirements on the free extent

© Novell Inc. All rights reserved

14

Multiblock allocator (example)

Assume blocksize 1K, file size is already 15000

Allocate 35 blocks
Estimated file size: 64 K → looking for 45 blocks
Found 64K free buddy, allocate 45 blocks from it
Put 14 blocks left to inode's preallocation list

Allocate next 40 blocks
First 14 blocks are allocated from inode's preallocation
Going to allocate next 26 blocks
Estimated filesize 128K → looking for 64 blocks
Cannot find free buddy of size 64 → next round of scan
Scan all free extents, the best found has 20 blocks.
Next allocation request happens for remaining 6 blocks

© Novell Inc. All rights reserved

15

Other features

fallocate

Extents just marked as uninitialized, data not written

Efficient preallocation of blocks to file

Online defragmentation
EXT4_IOC_MOVE_EXT ioctl

Atomically copies data of a file into provided space (allocated to
another file)

Support for control of allocation under development

Btrfs design

© Novell Inc. All rights reserved

17

Btrfs basics

Implemented from scratch (started in 2007)

Some parts resemble reiserfs

Copy-on-write filesystem

Not completely stable but quite fine

© Novell Inc. All rights reserved

18

B+trees

Core data structure of the filesystem

Internal nodes contain search indices, leaf nodes items

Several b+trees in the filesystem
Main one carrying most of the metadata

Other 5 trees for special purposes

Key in the tree: <object id, type, offset>

Results in close packing of metadata related to one object

© Novell Inc. All rights reserved

19

Modifications of b+tree

Modifications handled in copy-on-write manner

3 6 12

3 4 5 7 9 11 12 1310
d

3

d
4

d
5

d
7

d
9

d
10

d
11

d
12

d
13

© Novell Inc. All rights reserved

20

Modifications of b+tree

Modifications handled in copy-on-write manner

3 6 12

3 4 5 7 9 11 12 1310

Add item 15

d

3

d
4

d
5

d
7

d
9

d
10

d
11

d
12

d
13

© Novell Inc. All rights reserved

21

Modifications of b+tree

Modifications handled in copy-on-write manner

3 6 12

3 4 5 7 9 11 12 1310

Add item 15

12 13 15
d

7
d

9
d

10
d

11
d

12
d

13
d

3

d
4

d
5

d
15

d
12

d
13

© Novell Inc. All rights reserved

22

Modifications of b+tree

Modifications handled in copy-on-write manner

3 6 12

3 4 5 7 9 11 12 1310

Add item 15

12 13 15

3 6 12

d
7

d
9

d
10

d
11

d
12

d
13

d

3

d
4

d
5

d
15

d
12

d
13

© Novell Inc. All rights reserved

23

Modifications of b+tree

Modifications handled in copy-on-write manner

3 4 5 7 9 1110

Add item 15

12 13 15

3 6 12

d

3

d
4

d
5

d
7

d
9

d
10

d
11

d
15

d
12

d
13

© Novell Inc. All rights reserved

24

Modifications of b+tree

Modifications handled in copy-on-write manner

3 4 5 7 9 1110

Add item 15

The tree constantly moves as it changes

12 13 15

3 6 12

d
15

d
12

d
13

d
7

d
9

d
10

d
11

d

3

d
4

d
5

© Novell Inc. All rights reserved

25

Files

A file is comprised of:
Inode item – contains information about file size, permissions,

owner, etc.

Extent items – contain information about extent of data –
starting block, length, reference count

Data item – small files do not have extent items, data is stored
in data item instead

Data close to metadata → faster read

Saves space

Checksums of data

© Novell Inc. All rights reserved

26

Directories

Set of directory items with objectid of the directory

Item contains all entries with the same CRC32 hash

Natural tree structure → fast lookup and other dir ops

Directory index items
Used to traverse directory on readdir

Lists directory entries in creation order (should to be close to
disk order of inode items)

© Novell Inc. All rights reserved

27

Snapshots

Copy of a filesystem at given point in time stored in a
subdirectory of the filesystem

Can snapshot also a single directory or even a single file

Snapshots are writable, modifications to original and
snapshot are separate

Implemented just by referencing snapshotted object
(root of the filesystem tree, directory, file)

Because of copy-on-write handling, unchanged parts
are shared

Reference counting of each extent (tree node or data)

Recovery after a crash implemented via snapshots

© Novell Inc. All rights reserved

28

Checksumming

CRC32 checksum of each tree block
Space for 32-byte checksum is reserved

CRC32 checksum of each data block
Stored in a special tree just for checksums indexed by data

block number

Checksums of several blocks packed into a single item to
reduce overhead of item headers

© Novell Inc. All rights reserved

29

Multiple device support

Pool of devices to be used by a filesystem

Space from the pool allocated in a few GB chunks
Linearly mapped part of a device from the pool

Part of a device mirrored to another location on the device

Parts of several devices combined via RAID0, RAID1, RAID10

All devices hidden under a single linear address space

Special tree storing information about chunks
Superblock contains information how to map addresses from

the special chunk tree

Adding and removing chunks online
Easier device removal due to backreferences

© Novell Inc. All rights reserved

30

Tracking free space

Dedicated tree of free extents on disk

In memory RB tree of free extents
If RB tree would use more than 16 KB / GB, no more extents

are added to the RB tree and bitmaps are added instead

Total memory use by this structure limited to 32 KB / GB

Creation of in memory data structure from on disk tree
performed by a kernel thread

© Novell Inc. All rights reserved

31

Allocation algorithm

Delayed allocation

Search for free blocks quite complex

Three allocation strategies
Rotating media

SSD

SSD with bad random writes

Two purposes of allocation – metadata / data

Depending on purpose and strategy, we pick suitable
groups and mode of allocation

© Novell Inc. All rights reserved

32

Allocation algorithm (cont)

Three types of allocation groups (chunks)
System group – chunk tree

Metadata group – nodes of other trees

Data group – data blocks

Several rounds of allocation
Groups with cached free space information

Groups with partially cached free space information

Wait to load free space information

Add new chunk to the filesystem

Ignore group type

© Novell Inc. All rights reserved

33

Allocation algorithm (cont)

Two modes of allocation
Simple search for free extent

Clustered allocation – look for several nearby extents having
more free space, store unused ones for next allocation

Extent Cluster (~512K) Cluster (~2M)

Cluster (64K) Cluster (~128K) Cluster (~2M)

Data
Metadata

Rotational SSD SSD spread

In the last round, we just do simple extent search

When everything fails, restart allocation procedure
looking for a single free block

© Novell Inc. All rights reserved

34

Other features

Fallocate (similarly as ext4)

Online compression and decompression

Simple online defragmentation (reallocate file in the
new location)

Performance comparison

© Novell Inc. All rights reserved

36

Kernel tree copy

© Novell Inc. All rights reserved

37

Large directory

© Novell Inc. All rights reserved

38

Syncing test

© Novell Inc. All rights reserved

39

16 streaming writes

With nocow, btrfs matches xfs

© Novell Inc. All rights reserved

40

Mail server

© Novell Inc. All rights reserved

41

Random writes

Other filesystems

© Novell Inc. All rights reserved

43

Reiser4

Successor of reiserfs

Uses b+trees as the core structure

Combination of journaling and copy-on-write (wandering
trees)

Not certain whether / when it will be finished

Transparent encryption, compression

Modular design

© Novell Inc. All rights reserved

44

OCFS2

Cluster filesystem

Quite close to traditional unix design
Dynamic inode allocation

Extent trees

Journaling

Node local on disk structures to improve concurrency

© Novell Inc. All rights reserved

45

UBIFS

New flash filesystem – not for block devices

UBI layer to handle wearlevelling

No scalability issues of JFFS2 (mount time and memory
consumption independent of filesystem size)

UBI layer still takes time linearly growing with device
size to setup – work in progress to fix it

B+trees modified in copy-on-write manner

Online compression, checksumming

Thank you

	Break-Burst
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46

